

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multiplication

Xin He, Guangming Tan, and Junmin Xiao

2019/02/28

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

Sparse matrix and its storage format

- Sparse matrix is a matrix with lots of zero elements.
- Compressed Sparse Row (CSR) format contains three arrays: (1) row pointer, (2) column index, and (3) value.

$$B$$

$$(4x4)$$

$$nnzB = 6$$

B in CSR-format

Sparse matrix-matrix multiplication

- Two sparse input matrices
- One sparse output matrix

SpGEMM algorithm – basic

SpGEMM algorithm – basic

SpGEMM - Applications

- Algebraic multigrid method
- Breadth first search
- Shortest path
- Colored intersection
- Sub-graghs
- Sparse neural network

• ...

Sparse matrix floating efficiency

- Iregular sparse matrices

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

Challenges

- The number of nonzeros of the output is unknown in advance
- Irregular memory access
- Poor data locality
- Load imbalance problem

Increasing data access latency

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

Basic Sparse Accumulators

Sort-based Sparse Accumulator

Hash-based Sparse Accumulator

Merge-based Sparse Accumulator

Reg-sort Sparse Accumulator

There is no need to use shared memory for heavy computation and data movement

Reg-hash Sparse Accumulator

Decrease the total number of shared memory hash operations. (3 vs 4 iterations)

The intermediate products are well organized in a load balanced way.

Reg-merge Sparse Accumulator

The elements are all computed inside registers instead of the global memory

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

Experiments

- Platforms
 - Nvidia Pascal P100 GPU (3584 CUDA cores and 16GB HBM2 memory)
 - CUDA v8.0 and Intel C/C++ compiler v18.
- Benchmark: 205 matrices from SuiteSparse Matrix Collection

- Sparse (SpGEMM) and its applications
- Challenges
- Our sparse accumulator optimization
- Experimental results
- Conclusions

Conclusions

- This work has proposed three register-aware optimization methods to improve the performance of SpGEMM.
- The three new sparse accumulators have covered the parallel primitives, such as, sort, hash and merge.
- Numerical results demonstrates the significant performance improvement using the new methods.

Thanks! Any Ques?

